883

Mechanisms of the Isomerization of Butenes on Titanium Dioxide

By JEAN-LOUIS LEMBERTON, GUY PEROT, and MICHEL GUISNET*

(ERA CNRS, UER Sciences Fondamentales et Appliquées, 40 avenue du Recteur Pineau, 86022 Poitiers, France)

Summary The isomerization of butenes on TiO_2 proceeds through three different mechanisms, involving, respectively, protonic sites, Lewis acid sites, and basic sites, depending on the pretreatment temperature of the TiO_2 catalyst.

THE behaviour of TiO_2 has recently been shown¹ to be very complex by experiments involving the co-isomerization of normal and perdeuteriated butenes. The use of but-2-enes selectively deuteriated in the allylic or vinylic position has proved to be² a very convenient means of studying the isomerization of ethylenic compounds: it allows the detection of *cis-trans* isomerization and double bond migration with or without hydrogen exchange between the olefin and the catalyst, and the characterization of each of these reactions. The first results obtained on TiO_2 at 120 °C are reported here.

 $\rm TiO_2$ was prepared by hydrolysing $\rm TiCl_4$ with $\rm NH_4OH$. It contained *ca.* 0.03% Na but no Cl⁻, and showed the anatase structure. Before each experiment, the catalyst was dried overnight in a flow of dry N₂ at 350 or 550 °C. The surface areas of these samples were, respectively, 134 and 90 m² g⁻¹. On TiO₂ pretreated at 350 °C (T-350) double bond migration occurs with exchange of an allylic deuterium (Table): [1,4-2H6]-cis-but-2-ene gives [2H5]but-1-ene, whereas $[2,3-{}^{2}H_{2}]$ -cis-but-2-ene yields $[{}^{2}H_{2}]$ but-1-ene. Comparison of isomerization rates for the deuteriated cisbut-2-enes with that of $[{}^{2}H_{0}]$ -cis-but-2-ene shows that the former reaction gives rise to an isotope effect $(k_{\rm H}/k_{\rm D} 2 \cdot 1)$, whereas the latter occurs with no isotope effect $(k_{\rm H}/k_{\rm D} \ 1.0)$. The cis-trans isomerization involves the partial exchange of a vinylic deuterium; a small isotope effect is detected $(k_{\rm H}/k_{\rm D} 1.3)$ which can be ascribed to the breaking of the C-2H bond during the exchange reaction. On TiO2 predried at 550 °C (T-550) all the reactions occur without any hydrogen exchange between the olefin and the catalyst (see Table). Double bond migration gives rise to an important isotope effect $(k_{\rm H}/k_{\rm D} 4.0)$, but *cis-trans* isomerization occurs without any isotope effect.

T-350 catalyses both the double bond migration with exchange of an allylic hydrogen, and the *cis-trans* isomerization with exchange of a vinylic hydrogen; the breaking of the C-H bonds occurs during the rate-determining step. These reactions, which have been observed

		Product	0/	% Isotope distribution								² H atoms	
Reactant	Catalyst		% Product	² H ₀	² H ₁	$^{2}H_{2}$	² H ₃	² H ₄	$^{2}\mathrm{H}_{5}$	² H ₆	² H ₇	per molecule	$k_{\mathbf{H}}/k_{\mathbf{D}}$
[2,3- ² H ₂]-cis- But-2-ene				0.3	0.7	98.8	0.2					1.99	
	T-350 $\begin{cases} But-1-ene \\ trans-But-2- \end{cases}$		1.7	$2 \cdot 0$	3.9	93·1	1.0					1.93	1.0
			1.9	$2 \cdot 1$	49.2	48.6	$0 \cdot 1$	—				1.47	1.3
	}₁	ene But-1-ene	$2 \cdot 0$	1.1	2.6	96.1	0.2		_			1.95	1.0
	T-550 $\begin{cases} t_1 \\ t_2 \end{cases}$	rans-But-2-	0.4	1.8	3.9	94 ·0	0.3					1.93	1.0
[1,4- ² H ₆]-cis- But-2-ene	.ر	ene					0.05	0.95	10.7	88· 3		5.87	
	(I	But-1-ene	0.9				1.4	10.2	85.8	2.6		4.90	2.1
	T-350 { t	rans-But-2-	$2 \cdot 4$	—				1.4	12.5	$85 \cdot 1$	$1 \cdot 0$	5.86	1.0
	· }I	ene But-1-ene	0.7					1.1	13.0	$85 \cdot 8$	0.1	5.85	4.0
	T-550 $\begin{cases} t_1 \\ t_2 \end{cases}$	rans-But-2- ene	0.2	-			0.1	0.9	11.3	87.4	0.3	5.87	1.0

TABLE. Isomerisation of [2,3-²H₂] and [1,4-²H₆]-cis-but-2-enes

effect and consequently without any C-H bond-breaking during the rate-determining step. This same reaction is observed on T-550, accompanied by a double bond migration, without exchange, with the breaking of the allylic C-H bond $(k_{\rm H}/k_{\rm D} 4.0)$. It is impossible to explain these two reactions by a single mechanism since they occur simultaneously on T-550 but not on T-350. Therefore two different mechanisms must be invoked. Double bond migration could take place on the basic sites¹ of TiO₂, through allylic carbanions as on MgO.³ cis-trans isomerization may occur through σ -bonded carbocations as in the case of Webb's carbonium ion (A),⁴ where L is a Lewis acid site. Indeed, such an intermediate, which allows only geometrical isomerization, can be formed without any C-H bond-breaking.

(Received, 19th July 1977; Com. 730.)

¹ I. R. Shannon, I. J. S. Lake, and C. Kemball, Trans. Faraday Soc., 1971, 67, 2760; H. Hattori, M. Itoh, and K. Tanabe, J. Catalysis, 1975, 38, 172; ibid., 1976, 41, 46.

² G. Perot, M. Guisnet, and R. Maurel, J. Catalysis, 1976, 41, 14; M. Guisnet, J. L. Lemberton, G. Perot, and R. Maurel, *ibid.*, 1977, 48, 166.
³ M. J. Baird and J. H. Lunsford, J. Catalysis, 1972, 26, 440; J. L. Lemberton, G. Perot, M. Guisnet, and R. Maurel, Bull. Soc. chim.

³ M. J. Baird and J. H. Lunsford, J. Catalysis, 1972, 26, 440; J. L. Lemberton, G. Perot, M. Guisnet, and R. Maurel, Bull. Soc. chim. France, 1976, 3-4, 359. ⁴ A. N. Webb, Actes 2nd Congr. Internat. Catal., 1960, 1961, 1, 1289.